If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9+9x+x^2=0
a = 1; b = 9; c = +9;
Δ = b2-4ac
Δ = 92-4·1·9
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{5}}{2*1}=\frac{-9-3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{5}}{2*1}=\frac{-9+3\sqrt{5}}{2} $
| 84=5j+4 | | 14x+5+83+15x+5=180 | | 5x(5x-15)(7x-10)=0 | | 1)5n^2+7n-90=0 | | 2r+49=-8(-r-5)J/2r+49=-8(-r-5) | | 6=t-49 | | -3(m+6)=8(m-5) | | 7x+6+82+8x+2=180 | | y=19(10)-64 | | 84=6(q+4) | | =4a-82a | | -7y+3-6=14 | | 8y=-116 | | 12g-3=24g-27 | | 10s-19=1 | | 6+2x=29 | | 3/4=46.5c | | 6^(5x)-5=17 | | 18x-5+5=180 | | a-21/3=45/6 | | 2x-3(5x+6)=34 | | 4y+4y=3823382347462373732 | | 3/4=46.50c | | 4x=47.6 | | -27=9(g+11) | | 17x-5+5=180 | | 8n-36=(2+4n) | | Y=64(0.97)^x | | 12-4h=44 | | 3(x+8)^2−54=0 | | 15x²-120x+16=0 | | –5u=–4u−6 |